Discretionary Decisions in Public Administration Based on Machine Analytics: Challenges and Risks
https://doi.org/10.17803/2311-5998.2024.117.5.125-133
Abstract
The article is devoted to the problems and risks of machine analytics and other digital technological resources in making managerial decisions in public administration. The author raises the difficult question of the fact that against the background of loud victory speeches about mass measures of digital transformation in public administration, some timid and sensible voices have been lost, asking: can everything be perfect and without flaws? No technological nodes and solutions today work with 100 per cent reliability. The same is true of human organisations. No one and nothing is perfect. Therefore, defects, dysfunctions, imbalances, and errors in public administration have been in the past, are now, and will be in the future. The problem is that digital technologies, while helping to combat some of these defects, dysfunctions, imbalances, and errors in public administration, drive other defects, imbalances, and errors in public administration very deeply into the ground and create third ones. And we have not yet learnt how to diagnose all this. The article gives some eloquent examples of great harm caused by failures of machine analytics to support public administration decision-making. The author shows typical problems of digitalisation in public administration, but concludes that these problems are solvable.
About the Author
I. V. PonkinRussian Federation
Igor V. Ponkin, Professor of the Department of Administrative Law and Procedure, Dr. Sci. (Law), State Professor
9, ul. Sadovaya-Kudrinskaya, Moscow, 125993
References
1. Серков П. П., Соловей Ю. П. Административное усмотрение: вопросы и ответы. Ч. 1—3 // Сибирское юридическое обозрение. — 2022. — Т. 19. — № 4. — С. 374—383 ; 2023. — Т. 20. — № 1. — С. 6—24 ; № 3. — С. 224—271.
2. Anderson C. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete [Конец теории: Наводнение данных делает научный метод устаревшим] // Wired Magazine. — 23.06.2008.
3. Bozeman B., Pandey S.K. Public Management Decision Making: Effects of Decision Content [Принятие решений в области государственного управления: Влияние содержания решения] // Public Administration Review. — 2004. — Vol. 64. — № 5. — P. 553—565.
4. The Government Analytics Handbook: Leveraging Data to Strengthen Public Administration [Справочник по правительственной аналитике: Использование данных для укрепления государственного управления] / edited by Daniel Rogger and Christian Schuster. — Washington (D. C., USA) : International Bank for Reconstruction and Development / The World Bank, 2023. — XIX. — 760 p.
5. Kersting K. No End of Theory in AI! Artificial Intelligence thrives on assumptions, theories, and data [Теориям в тематике искусственного интеллекта нет конца! Искусственный интеллект процветает благодаря предположениям, теориям и данным] // URL: https://ml-research.github.io/papers/kersting2022welt_theory.pdf.
6. Steif K. Public Policy Analytics: Code and Context for Data Science in Government [Аналитика государственной политики: Кодифицированный и контекстный подход для науки о данных в правительстве]. — Boca Raton (FL, USA): CRC Press, 2022. — XXI. — 206 p.
7. Yeung K. The New Public Analytics as an Emerging Paradigm in Public Sector Administration [Новая публичная аналитика как новая парадигма в секторе публичного управления] // Tilburg Law Review. — 2022. — Vol. 27. — № 2. — P. 1—32.
Review
For citations:
Ponkin I.V. Discretionary Decisions in Public Administration Based on Machine Analytics: Challenges and Risks. Courier of Kutafin Moscow State Law University (MSAL)). 2024;(5):125-133. (In Russ.) https://doi.org/10.17803/2311-5998.2024.117.5.125-133